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Abstract—A fixed-grid finite volume numerical approach is developed to simulate the melting during the solid-liquid
phase-change driven by convection as well as by conduction. This approach adopts the enthalpy-porosity method
augmented with the front-layer predictor-corrector and the pseudo Newton-Raphson algorithms that were devised to
track the phase front efficiently in the conduction-driven phase-change problems. The computational results compare
well with experimental data and transformed-grid results in the literature. Also, the effect of the delayed heat-up at a

heated wall on the melting process is investigated.
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INTRODUCTION

Solid-liquid phase-change processes have been receiving much
mterest from many engmeering fields such as thermal energy stor-
age systems using latent heat and matenal processes [Choi et al,
1995; Voller, 1997]. Convection as well as conduction drives the
solid-liquid phase-change processes. The temperature difference m
the melt can give rise to natural convection, and the flow structure
mitiated by the convection can significantly affect the phase-change
process. The convection hes a great mfluence on the morphology
of the solid-liquid mterface, which can alter the flow structure
the melt. Hence, the effect of natural convection in the melt on the
phase change has been paid considerable attention for the past sev-
eral decades.

In general, the usual numerical methods for phase-change prob-
lems are the fixed-grid [Brent et al,, 1988; Desai and Vafai, 1993;
Viswanath and Jaluria, 1993; Rady and Mohanty, 1996; Kim etal.,
2001] and the trensformed-grid methods [Beckermarm and Vis-
kanta, 1989, Desai and Vafai, 1993; Viswanath and Jaluria, 1993].
In the fixed-grid method, a single set of conservation equations and
boundary conditions is used for the whole domamn comprismg the
solid and liquud phases, while the transformed-gnid method consid-
ers the goverming equations on the basis of the classical Stefan for-
mulation. In the transformed-gnid method, the mterface conditions
are easily and explicitly imposed on the governing equations; how-
ever, m the fixed-gnd method, they are absarbed mto the govern-
mg equations as suitable source terms.

The fixed-grid method requires velocity suppression because the
zero-velocity condition should be satisfied as a iquid region turns
to solid. Velocity suppression can be accomplished by the large vis-
cosity of the solid phase or by the suitable source term inn the mo-
mentum equation driven to model the two-phase domam as a porous
medium. The fixedgnd method combmed with the porous medum
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method 15 usually referred to as the enthalpy-porosity method.

In thus study, an enthalpy-porosity model for the convection-dom-
mated melting 1s developed. The related numerical model 1s mncor-
porated with the front-layer predictor-corrector algorithm, a mult-
dmensional version of the single-pomt predictor-corrector algorithm
that was proposed to solve heat conduction-driven phase-change
problems effectively [Kium et al., 2001]. The computational results
are compared with expermmental and numerical data available m
the literatures. The effect of the delayed heat-up at the heated wall
on the prediction of the phase-change process is also mvestigated.
In most cases, the phase change problems have been solved under
the assumption of constant wall temperatures that should be sud-
denly reached to the desired temperatures; however, the reality m
the experiments could be a time delay i the heat-up [Gau and Vis-
kanta, 1986)]. Such a delayed heat-up will affect the natural con-
vection m the melt durmg the phase-change process considerably
and may be a cause of the mismatch between the analytic and the
experimental results.

The spatial and temporal discretizations are achieved mn the con-
text of the finite volume scheme and the fully implicit (backward)
Euler scheme, respectively. The flow field 1 expressed 1 terms of
primitive variables and solved by adopting the SIMPLE algorithm
[Patankar, 1980].

MATHEMATICAL MODEL

Two-dimensional meltmg m a rectangular cavity can be sum-
marized, as shown n Fig. 1. The melting will be driven by natural
convection as well as by conduction in a rectangular cavity. The
phase changing material is contained i a cavity, whose horizontal
walls are msulated. Imitially, the phase changing material i the cav-
1ty 18 kept at uniform temperature T, below or at T,,. The tempera-
ture at the nght wall, T, 1s maintained at T,. Most of the previous
numerical simulations assurmed that the sudden elevation of the heat-
ed wall (the left wall) temperature above the T, mutiates the melt-
mg. Then, the temperature difference between the hot wall and the
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Fig. 1. Schematics of gallium melting problems: (a) Beckermann
and Viskanta [1989]: Ra=3.166x10’, Ste=0.04854; (b) Gau
and Viskanta [1986]: Ra=6.057x10°, Ste=0.03912.

melting temperatures causes natural convection m the melt In fact,
the sudden temperature rise cannot be carried out m real experi-
ment, however, 1t 1s possible m the magmary expermment. The tune
delayed heat-up occurs m a real experiment and it delays the m-
itiation of natural convection and affects the melting process. Now,
we derive a smplified model to account for the delayed heat-up.
In many experiments, the constant wall temperatire condition 1s
attamed by flowmg liqud commg from a constant temperature re-
servorr. Hence, consider the heat transfer from the hot water reser-
vorr to the hot wall and assume that the temperature of the hot re-
servorlr s kept at a constant, T . Then, the hot wall, which 1s wutially
cool at T,, will be heated by the hiquid flow from the reservoir. The
water temperature, which 1s T, at the mlet of the flow path, decreases
due to the heat transfer to the wall. The rate of change of the wall
temperature is proportional to the temperature difference between
the outlet and the mlet flow temperatures, and also to the tempera-
ture difference between the average flow temperature and the wall
temperature. The proportional constants are dependent on many
variables: specific heats of the wall and the licuud, mass of the wall,
heat transfer area, mass flow rate of the liquid and heat transfer co-
efficient between the liquud flow and the wall. Hence, one can easily
show that the wall temperature can be expressed as an exponential
function of time. In other words, simphfying the heat exchange pro-
cess between the hot reservor and the wall, 1t 13 reasonable to take
accourt of a time constant i T

T=Tw (T T)e™ 9]

where T, T,y &T,,) and 7 represent hot wall temperature, prede-
termmed temperature to be reached and tune constart, respectively.
Neglecting the time delay i heating implies T=0.
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The momentum field 1s subjected to no-shp boundary conditions
at the walls. The flow 1s assumed to be two-dimensional, laminar,
and mcompressible. The thermophysical properties of the materi-
als are constant but those of the iquid and the solid phases are dif-
ferent. But here the density difference between the solid and the liq-
uid phases 13 neglected except when the Boussinesq approxima-
tion 1 mvoked.

In the fixed-gnd method, the absorption and evolution of the la-
tent heat durng the phase change leads to the modification of the
energy equation because the mterface 1 not tracked, and then the
interface conditions are not imposed explicitly. The fixed-gnd method
1s basically relymg on the enthalpy formulation, which mtroduces f
(the ratio of the liquid mass to the total mass m a given computa-
tional cell). If b, and T, are set to the reference enthalpy and tem-
perature, respectively, the specific enthalpy will simply be

h=fL+cT, ©

where L and ¢ represent latent heat and specific heat capacity, re-
spectively. The liquid mass fraction can be obtamed from the en-
thalpy:

0 1fh<0
f=<WL if0<h<L. )
1 ifL<h

In sothermal phase change, fmally, we can obtam the enthalpy-
based governing equations [Viswenath and Jaluria, 1993; Rady and
Mohanty, 1996]:

v-3=0, “
aﬁ 2 g2l 22 2 2

pl5; UV == Vp+uVii—pgB(T ~T,) +5, )

p[a%(cT) +1- V(cT)J =kV’T —pLg—f, 6

where 3, P, —g), B and k are the velocity vector, density, gravita-
tional acceleration, thermal expansion coefficient and thermal
conductivity, respectively. Durng the solution process of the
momentum field, the velocity at the computational cell located
1n the solid phase should be suppressed while the velocity
the liquid phase remains unaffected. One of the popular models
for the velocity switch-off 1s to mtroduce a Darcy-like term
[Viswanath and Jaluria, 1993; Rady and Mohanty, 1996]:

2__ (-
s c(fg +b)u )

which are easily meorporated mto the momentum equation as shown
m Eq. (5). The constant C has a big value to suppress the velocity
as a cell becomes solid and b 1s a small number used to prevent the
dwvision-by-zero when a cell is fully located in the solid region, name-
ly £=0. The choice of the constants 1s arbitrary. However, the con-
stants should ensure sufficient suppression of the velocity m the solid
region and also they do not mfluence the numenical results sigmfi-
cantly. In this work, C=1x10° kg/m’s and b=0.005 are used [Vis-
wanath and Jaluria, 1993].
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NUMERICAL MODEL

For effective caleulation, the mumerical procedure adopts the front-
layer predictor-corrector algorithm, which was devised for, and suc-
cessfully applied to, the heat conduction phase change problems
by Kim et al. [2001]. The detailed numerical procedure 1s well de-
scribed m therr work, where several Hlustrative examples can also
be found. Tlus study mtroduces the pseudo Newton-Raphson al-
gonthm m addition to the front-layer predictor-corrector algorithm.
The 1dea of the pseudo Newton-Raphson algorithm 1s straightfor-
ward The discretized energy equation m the finite volume formu-
lation [Patankar, 1980] can be expressed as

azle =Eaanb +Se _ag(fp _f;) ®
nb

where subscripts ‘P’ and ‘nb” mean the value of present and neigh-
bormg cell, respectively. Superscript “*” denotes the value at previ-
ous time step. The detailed expressions of the influence coefficients
ap a,, a5 and source term S, can be found without difficulty (refer
to Patankar [1980]). The terms relating to the liquid fraction sepa-
rate the non-linear behavior associated with the phase change mto
a source term. During the tterative predictor-corrector procedure, n
order to expedite the temperature convergence from the non-lmear
relations, we could resort to the Newton-Raphson method. The prob-
lem is to find the temperature minimizing the objective function @

@ =0T, SauTu +S, a6 ) | ©)

The updated temperature could be written as

a@(”j_l. (10)

(1) _ ) _ )

TE T g [a—T,,
If the Jacobian 6d/0T , is known, the Newton-Raphson method sure-
ly guarantees faster convergence. However, the Jacobian cannot be
given without any cost. Now, we assume that the neighboring tem-
peratures are constant during the predictor-corrector procedure and
f does not have terms explicitly related to T, Also if thermophysi-
cal properties are not to be strongly dependent on temperature, the
Jacobian could be farly approximated as 90"/9T ,=a®. Now, the
updated temperature can be readily obtained:

Ty =127 an
ar
We call this algorithm the pseudo Newton-Raphson since we do
not strictly calculate the Jacobian.

The SIMPLE algorithm [Patarkar, 1980] 1s employed to find the
velocity and pressure field The mterpolation scheme for the con-
vection term 1s known to be very mportant i the prediction of con-
vection-dominated processes. Int the context of the spatial discreti-
zation, introducing the central difference scheme as a second order
scheme 1s quite natural but 1t 1s often bafflmg due to its well-known
oscillatory behavior. As a simple way to detour such oscillatory be-
havior, the upwind difference scheme 1s referred to. It 1s, however,
prone to false diffusion especially m the mult-dimensional prob-
lemn. The power law scheme based on the exact solution of the one-
dmensional convection problem 1s preferred m meny engimeermg

purposes. Of course, numerous interpolation schemes have been
devised and used. Some of them are as smple as the mterpolation
schemes stated above, but most of them are more complicated, harder
to mplement, and even more time-consumimg. These adverse fea-
tures make the aforementioned classical mterpolation schemes viable.

One of the simple but effective schemes 1s the deferred correc-
tion method [Ferziger and Peric, 1999]. The lower-order flux ap-
proxmation (the upwind difference scheme is often used) 1s implic-
itly imposed while the higher-order approximation 1s explicitly ob-
tamed from the previous iteration. For example, the flux through
the east control surface F, 1s given as

F,=F; +y(F/ -F)™, (12)

where ¥ 1s the blending factor, and the superscripts H and L repre-
sent higher- and lower-order approxmation of the convection term,
respectively. Normally, the explicit pert 1s so small that 1t may not
affect the convergence sigmficantly. In this study, as the lower- and
the hugher-order scheme, the upwmd difference scheme (UDS) and
the central difference scheme (CDS) are chosen, respectively. The
case with y=0.5 1 called the mixed difference scheme (MDS).

NUMERICAL RESULTS AND DISCUSSION

The proposed algorithm 1s applied to simulate the convection-
dommated melting of a pure gallium. The numerical predictions
are compared with the experimental data and numerical results de-
termined by the transformed-grnid method m the previous works.
The gallium meltmg experiments of Viskanta and his coworkers
[Gau and Viskanta, 1986; Beckermann and Viskanta, 1989] are se-
lected as references because they have been widely cited for the
verfication of recently developed mumerical models [Prent et al.,
1988; Desai and Vafai, 1993; Viswanath and Jaluria, 1993; Rady
and Moharnty, 1996]. The expermmental configurations are sketched
mFig. 1. The thermophysical properties used m the calculation are
adopted from Brent et al. [1988].

1. Example 1

Experiment 1 of Beckermann and Viskanta [1989] 1s sumulated
with the proposed method Rady and Mohanty [1996] used a non-
urnform 35%35 gnd for the fixed-grid calculation after a grid refine-
ment test Hence, this study simply adopts a non-uniform 40x40
gnid for Example 1. As the mterpolation scheme for the convective
transport term, the mixed difference scheme 1s adopted because 1t
gives satisfactory results for the prediction of the flow structure m
the melt and the evolution of the front location. The effect of the
mterpolation mode] for the convection term on the numerical results
will be discussed later.

The predicted temperature profiles at 3, 10, and 50 mmn are shown
mFig. 2, where the experimental data and the transformed-gnid re-
sults obtained by Beckermann and Viskanta [1989] are also given
for the comparison. The calculated temperature distributions show
a better agreement with the experimental data than those by the trans-
formed-grid.

In this meltng expermment, Beckermarm and Viskanta reported
that 1t took about 20 sec for the hot wall to reach the desired tem-
perature, and the time delay m heatmg 15 small enough. Because
the calculation also shows its effect to be negligible, the computa-
tional results with the delayed heat-up are not presented in Fig. 2.

Korean J. Chem. Eng.(Vol. 18, No. 5)
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Fig. 2. Temperature profile for Example 1, where 6, and 6, repre-
sent dimensionless temperatures of liquid and solid phase,
respectively: (a) at 3 min; (b) at 10 min; (¢) at 50 min.

2. Example 2
In order to verify the predictability of the evolution of the phase
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front, Gau and Viskanta’s [1986] melting expermment conducted m
a rectangular cavity with H/W=0.714 1s chosen. A uniformly spaced
50%36 gnd 1s used for our calculations, while Viswanath and Jaluna
[1993] used auruform 50x30 grid for the fixed-gnd caleulation after
a grid refinement test.

As for the mterpolation schemes of the convection term, we tested
four schemes prelminanly; UDS (y=0.0), CDS (y=1.0) and MDS
(y=0.5) and a power law scheme (PLS). Duning preliminary calcu-
lations, the delayed heat-up at the heated wall 1s not considered The
front locations predicted by the UDS, the MDS and the PLS are
similar to each other, but the phase change front by the CDS is some-
what distorted An mteresting pout to note 1s that the flow struc-
tures obtained m many researches [Brent et al., 1988; Viswanath
and Jaluna, 1993; Voller, 1997] show only a single cell m the melt
region. Viswanath and Jaluria [1993] observed a secondary recir-
culation cell mn the lower part of the melt region with the trans-
formed grid. However, they also were not able to capture the sec-
ondary eddies with the fixed-gnid based on the enthalpy method,
even with a finer resolution (60x50) than the transformed-gnd cal-
culation (40=40). Our calculations show that the CDS and the MDS
predict the streamlmes that are obviously distorted due to the second-
ary flow structure, as shown m Fig. 3 while the UDS and the PLS
generate only asmgle cell. The results support that the upwinding al-
gorithm tends to be overly diffusive and suppresses the secondary
structure as Ferziger and Peric [1999] cnticized. The tested results
show that the MDS has good predictability of the front location and
the flow structure n the melt The MDS, hence, 15 adopted as an m-
terpolation scheme of the convection term throughout the calculation.

As shown m Fig. 4, the measured phase fronts are plotted to ver-
ify the proposed model with the transformed-grid sohutions based
on the finite element method [Desai and Vafai, 1993] and the finite
volume method [ Viswanath and Jaluria, 1993]. Of course, in both
studies, the heated wall condition was treated as 1deal sudden tem-
perature elevation and the time delay 1 heating up the heated wall
was not considered.

When comparmg solid-hquid mterfaces of two methods at 6 and
10mmn, the transformed-grid method gives good agreement with
the experimental data. But the predicted solid-liquid mterfaces by
the proposed method without taking the delayed heat-up mto ac-
count show some discrepancy with the expermmental data. Such dis-
crepancy 1, m fact, more reasonable because the mmpulsive tem-
perature tise 1s very difficult in the experiment and the heated wall
should be heated up with time delay. The actual amount of energy
transferred to the gallum through the hot wall should be less than
the energy imposed in the 1dealized simulatior, so that the retarda-
tion of the front evolution m the experiments 1s probable. The meas-
urement of the reliance of the actual temperature at the heated wall
1s required to account for the delayed heat-up. However, a detailed
lustory of the temperatures at the hot wall 1s not available m this
problem. Therefore, we mtroduce the time constant as shown m
Eq. (1) because we may approxmmate the temperature at the hot wall
to be exponentially growmg with a suitable time constant We as-
sume T=67.89 sec, which corresponds to T, (4 mmn)=37.71 °C and
T, 8 min)=37.99°C. This temperature history 1s close to the meas-
ured data mn a similar experimental condition (See Fig. 5 in Gau
and Viskanta [1986]). As can be seen i Fig. 4, the mnclusion of the
delayed heat-up mmproves the numerical prediction considerably.
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Fig. 4. Evolution of phase front for Example 2: (a) at 6 min; (b) at 10 and 19 min.

The predicted phase fronts with the consideration of tume delay are
retarded due to less heat transfer from the heated wall, and they are
m excellent agreement with the experimental results.

The effect of delayed heat-up at the hot wall 1s less sigmificant at
19 min; on the contrary, the interfaces obtamed by Viswanath and
Jaluria [1993] with the transformed-grid deviate much more from
the expermmental data than those with the proposed model. The fimite
element results by Desai and Vafai [1993] do not present the front
location at 19 min, so that these are not compeared m Fig. 4. Tt should
be noted that all mumerical results at 19 mmn presented m Fig. 4 show
much discrepancy with the expermental data than those at 6 or 10
min. Even though the proposed model gives better prediction than
the previous models, our results still have an obvious discrepancy

with the experiment. Some part of the discrepancy can be explamed
by considering the experimental condition at the cooled wall. Ac-
cording to Fig. 5 m Gau and Viskanta [1986], the cold wall temper-
ature was gradually mcreased from the mitial temperature to the fu-
sion temperature. Hence, as time proceeded, less heat was removed
through the cold wall. The maccurate modeling of the thermophys-
1cal properties such as the amsotropic nature of the thermal con-
ductivity as well as the numerical modeling error, of course, can be
another reason for the discrepancy.

CONCLUSIONS

The meltmg driven by conduction as well as convection m a rec-

Korean J. Chem. Eng.(Vol. 18, No. 5)
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tangular enclosure 15 mvestigated numerically. The mathematical
model based on the enthalpy-porosity method is developed to de-
scribe the phase change accompanied with natural convectionn Thus
study adopts the front-layer predictor-corrector and the pseudo New-
ton-Raphson algonthms, whose effectiveness 1s venfied through
solving the conduction-driven phase-change problems. Results of
the proposed model show excellent agreement with experimertal
data and transformed-grid results available m the literature.

The effect of the time delay mn heating a hot wall on the melting
1s studied The computational results mdicate that the delayed heat-
up will affect the phase-change process 1if the time constant of the
heat-up at the heated wall 1s not small enough. They also mmply the
delayed heat-up causes the discrepancy between the numerical and
the experimental results.

NOMENCLATURE
c . specific heat capacity
CDS  : central difference scheme
f : iquid mass fraction
F, : flux through the east face

h, : saturation enthalpy of solid

L : latent heat

MDS  :mixed difference scheme

ELS  :power law scheme

S . source vector to account for velocity suppression
T, : mitial temperature

T

' : fusion temperature
Te . temperature at the right wall (cold wall)
Ty : temperature at the left wall (hot wall)

T : predetermined tem perature to be reached
UDS  : upwind difference scheme

Greek Letters

o : thermal diffusivity

B : thermal expansion coefficient of liquid

¥ : blending factor used in deferred correction method
AT : temperature difference (T ,p— T,,)

p - density

T : tiume constant

Pr : Prandtl number (=v,/o)
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Ra - Rayleigh number (= gBATH fov))
Ste . Stefan number (=cAT/L)
Superscript
H,L :higher- and lower-order approximation of the convec-
tion term
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