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a 

Abst lact-A fixed-grid finite volume numerical approach is developed to simulate the mdting during the solid-liquid 
phase-change driven by convection as well as by conduction. This approach adopts the enthalpy-porosity method 
augmented with the front-layer predictor-con-ector and the pseudo Newton-Raphson algontlm~s that were devised to 
track the phase front efficiently in the conduction-driven phase-change problems. The computational results compare 
well with experimental data and transformed-grid results in the literature. Also, the effect of the delayed heat-up at a 
heated wall on the melting process is investigated. 
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INTRODUCTION 

Solid-liquid phase-change Ix-messes have been receiving much 
interest from many engineering fields such as thermal energy stor- 
age systems using latent heat and material processes [Choi et al., 
1995; VolIei; 1997]. Com~ection as well as conduction chives the 
solid-Iiquld phase-charge processes. The temperature difference in 
the melt can give rise to natural convection, and the flow structure 
initiated by the convection can significantly affect the phase-charge 
process. The convection has a great influence on the morphology 
of the solid-liquid interface, which can alter the flow s~ruc~0ae in 
the melt_ Hence, the effect of natural convection in the melt on the 
phase change has been paid considerable attention for the past sev- 
eral decades. 

In general, the usual numerical methcds for phase-change prob- 
lems are the f~xed-g-id [Brent et al., 1988; Desai and Vafai, 1993; 
Viswanath and Jaluria, 1993; Rady and Mohanty, 1996; Kim et al., 
2001] and the transformed-grid methcds [Beckermarm and Vis- 
ka~0ca, 1989; Desai and Vafai, 15;93; Viswanath and Jalva-ia, 1993]. 
In the fixed-grid method, a single set of conservation equations and 
boundary conditions is used for the whole domain comprising the 
solid and liquid phases, while the trmlsfon'ned-giid method consid- 
ers the govemmg equations on the basis of the classical Stefan for- 
mulation. In the tralsfonned-gi-id method, the interface conditions 
are easily and explicitly imposed on the goveming equations; how- 
ever, in the Kxed-grid method, they are absorbed into the govem- 
ing equations as suitable source temas. 

The fLxed~grid method requires velocity suppression because the 
zero-velocity condition should be satisfied as a liquid region turns 
to solid. Velocity suppression can be accomplished by the large vis- 
cosity of the solid phase or by the suitable source term in the mo- 
mentum equation &iven to model the two-phase domain as a porous 
medium. The Kxed~grid methcd combined with the porous medium 
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method is usually refened to as the enthalpy-porosity method. 
In this study, an enthalpy-porosity model for the convection-dora- 

mated melting is developed. The related nva-nerical model is incor- 
porated with the fi-ont-Iayer predictor-corrector algorithm, a multi- 
dknensional version of the single-point predictor-conector algorith-n 
that was proposed to solve heat conduction-di'iven phase-charge 
problems effectively [Kim et aI., 2001]. The compta~ational results 
are coml:~-ed with expeas-nental and numerical data available in 
the literatures. The effect of the delayed heat-up at the heated wall 
on the prediction of the phase-change process is also investigated. 
In most cases, the phase charge problems have been solved under 
the assumption of constant wall temperatures that should be sud- 
denly reached to the desired temperatures; however, the reality in 
the experiments could be a Nne delay in the heat-up [Gau and Vis- 
kanta, 1986]. Such a delayed heat-up will affect the natural con- 
vection in the melt d~-mg the phase-ct~nge process considerably 
and may be a cause of the mismatch between the analytic and the 
experimental results. 

The spatial and temporal discretizations are achieved in the con- 
text of the finite volume scheme and the t iny implicit (baclcward) 
Euler scheme, respectively. The flow field is expressed in terms of 
pm-nitive vmables and solved by adopting the SIMPLE algoritt~-n 
[Patankar, 1980]. 

MATHEMATICAL MODEL 

Two-dimensional raelting in a rectmgular cavity can be sum- 
martzed, as shown in Fig. 1. The melting will be driven by na~-al 
convechon as well as by conduchon in a rectangLflar cavity. The 
phase changing material is contained in a cavity, whose horizontal 
walls are insulated Inihally, the phase changing material in the cav- 
ity is kept at unifon-n temperature T~ below or at T,,. The te~-npera- 
axre at the right wall, To, is maintained at T,. Most of the previous 
nurnericaI simulations assumed that the sudden elevation of the heat- 
ed wall (the left wall) temperature alcove the 2",,, initiates the melt- 
rag. Then, the tempemt~tre difference between the hot wall and the 
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Fig. 1. Schematics of gallium melting problems: (a) Beckermann 
and Viskanta [1989]: Ra=3.166x10 ~, Ste=0.04854; (b) Gau 
and Viskanta [1986]: Ra=6.057x105, Ste=0.03912. 

mel6ng teanpe, a~-es causes ilaturaI convection in the melt In fact, 
the sudden tempem~tre rise cannot be carried out in real experi- 
ment; howevez; it is possible in the imaginary experhnent The tkne 
delayed heat-up occurs in a real expeisnent and it delays the in- 
Nation of natural com~ecfion and affects the melting process. Now, 
we derive a simplified model to account for the delayed heat-up. 
In many experiments, the constant wail temperature condition is 
attained by flowing liquid coming fi-on~ a constant tempera~-e re- 
servoin Hence, consider the heat ~ansfer fiom the hot water reser- 
voir to the hot wail and assume that the temperature of the hot re- 
servoir is kept at a constant, The. Theil, the hot wail, which is initially 
cool at T,, will be heated by the liquid flow fiom the reservoir. The 
water temperature, which is T~ at the inlet of the flow path, decreases 
due to the heat transfer to the wall. The rate of d~ange of the wall 
temperature is proportional to the temperature difference between 
the outlet and the itflet flow temperatures, and also to the tempera- 
bare difference between the average flow tempera~e and the wall 
temperature. The proportional constargs are dependent on many 
vmiables: specific heats of the wail and the liquid, mass of the wall, 
heat transfer area, mass flow rate oft_he liquid and heat transfer co- 
etficient between the liquid flow and the wall. Hence, one can easily 
show that the wail temperature can be expressed as an exponential 
function of ~m'ne. In other words, simplifying the heat exchange pro- 
cess between the hot reservoir and the wall, it ks reasonable to take 
accom~t of  a time constmlt in TH: 

TH=Tm- (T~-  Z)e -'~ (I) 

where Tu, T~ (>%,) and "c represent hot wall temperature, prede- 
termined temperatua-e to be reached and time comtant, respectively. 
Neglecting the time delay in heating hnplies "c=0. 

The momentum field is subjected to no-slip boundary conditions 
at the walls. The flow is assumed to be two-dimensional, laminar, 
and incompressible. The thermophysical properties of the materi- 
als are constalt but those of the liquid and the solid phases are dif- 
ferent. But here the density difference between the solid and the liq- 
uid phases is n~Iected except when the Boussinesq approxima- 
tion is invoked. 

In the fixed-grid method, the absorptton and evoluhon of the la- 
tent heat &ruing the phase charge leads to the modification of the 
energy equahon because the interface is not ~acked, and then the 
interface conditions are not imposed explicitly. The Kxed-gnd method 
is basically relying on the ei~alpy formulation, which in~oduces f 
(the rabo of the liquid mass to the total mass in a given computa- 
tional cell). I f N  and T,, are set to the reference enthalpy and tem- 
perature, respectively, the specific enthalpy will simply be 

h=/L+cT, (2) 

where L and c represent latent heat and specific heat capacity, re- 
spectively. The liquid mass fi-action can be obtained fi-on~ the en- 
thalpy: 

f!VL if h<0 
f =  if0_<h_<L. 

i fL<h  

(3) 

In isothermal phase change, finally, we can obtain the enthalpy- 
based governing equations [Viswa~ath and Jaluha, 15;93; Rady and 
Mohanty, 1996]: 

v-~=0, (4) 

p +u-Vu = - V p + ~ V  u-pgl3(T -T,,) +S, (5) 

p[~t(cT) +i~-V(cT)] =kV2T L of 
-p  N, 

(6) 

where -> ~, u, p, [3 and k are the velocity vector, density, gravita- 
tional acceleratioil, them~al expansion coefficient and thennaI 
conductivity, respectively. Dusng the solution process of the 
momentum field, the velocity at the computational cell located 
in the solid phase should be suppressed while the velocity in 
the liquid phase remains ~maffected. One of the popular models 
for the velocity switch-off is to introduce a Darcy-Iike term 
[Viswanath and Jaluzia, 1993; Ra@ and Mohanty, 1996]: 

~ _ _ ~ ( 1  - f ) ~  
- ( 7 )  

which are easily incoiFomted into the momeiIbmn equation as shown 
in Eq. (5). The constant C has a big value to suppress the velocity 
as a ceil becomes solid and b is a small number used to prevent the 
division-by-zero when a ceil is tiny located in the solid region, name- 
ly f=0. The choice of the constants is arbi~-ary. Howevez; the con- 
s t a ~  should ensure sufiScient suppression of the velocity in the solid 
region and also they do not influence the numerical results signifi- 
cantly. In this work, C=I x109 k~m3s and b=0.005 are used [Vis- 
wanath and Jaluria, 1993]. 
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NUMERICAL MODEL 

For effective calculation, the numerical procedure adopts the fiont, 
layer predictor-corrector algorithm, which was devised for, and suc- 
cessfiily applied to, the heat conduction phase change problems 
by Kim et al. [2001]. The detailed numerical procedure is wen de- 
scribed in their work, where several ilIush-ative examples can aIso 
be found. T t~  study introduces the pseudo Newton-Raphson aI- 
gorithm in addition to the fi-ont-layer predictor-corrector algorithm. 
The idea of the pseudo Newton-Raphson algo:itl~n is straightfor- 
ward The discretized energy equation in the finite volume fonuu- 
lation ['Patankar, 1980] can be expressed as 

aeTe='.~a.~T.~+Se-a~(fe-~) (8) 

where subscripts ~P' and h:b' mean the value of present and neigh- 
boz-ing ceil, respectively. Superscript ~*' denotes the value at previ- 
ous ~ne  step. The detailed expressions of the influence coeRicients 
a~ a~, ap ~ and source ten:: Sp can be found without difficulty (refer 
to Patankar [1 980]). The tem:s relating to the liquid fiaction sepa- 
rate the non-linear behavior associated with the phase change into 
a source tern:. Du:mg the iterative predictor-con-ector precede-e, in 
order to expedite the temperature com:ergence fi-orn the non-linear 
relations, we could resort to the Newton-Ra-phson method The prob- 
lem is to fred the temperature mi:m-nizing the objective fimction qS: 

~ =apTp - [~a~bT.b + Sp - a~(fp - ~)]. (9) 

The updated temperature could be written as 

(.+0_ (~) (~)F ] O C )  (~) -l 

L o'• ,, J 
(10) 

If the Jacobian ~/-dTp is knowl~ the Newton-Raphson method sure- 
ly ~arantees faster convelgence. However, the Jacobian cannot be 
given without any cost Now, we assume that the neighbozJrg tem- 
perat::res are constant during the predictor-corrector procedure and 
f does not have terms explicitly related to Te Also if thermophysi- 
cal properties are not to be strongly dependent on tempera~-e, the 
Jacobian could be fairly approximated as Oq~<"~/OT p= a ~'~. Now, the 
updated temperature can be readily obtained: 

T(.+I) =T(~) C) (") 
p xp a~.~. (11) 

We call this algorithm the pseudo Newton-Raphson since we do 
not strictly calculate the Jacobian. 

The SIMPLE algorithm [Patanka:; 1980] is e~uployed to find the 
velocity and pressure field The interpolation scheme for the con- 
vection ten:: is known to be very important in the prediction of con- 
vection-dominated processes. In the context of the spatial discreti- 
zation, ir~o&:c:ng the central difference scheme as a second order 
scheme is quite natural but it is often beKling due to its welI-known 
oscillatory behavior. As a simple way to detour- such oscillatoly be- 
havior, the upwind difference scheme is referred to. It is, however, 
prone to false diffusion especially in the multi-dimensional prob- 
lem. The power law scheme based on the exact solution of the one- 
dknemional convection problem is preferred in many engineehng 
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purposes. Of course, numerous interpolation schemes have been 
devised and used. Some of them are as simple as the interpolation 
sd:emes stated above, but most of them are more complicated, harder 
to implement, and even more time-consuming These adi:erse fea- 
tures make the aforementioned classic/inte:polation schemes viable. 

One of the simple but effective schemes is the deferred correc- 
tion method [Ferziger and Pez-ic, 1999]. The lower-order flux ap- 
proximation (the ut~vmd difference scheme is ollen used) is in:plic- 
itly imposed while the higher-order approxamation is expIicitly ob- 
tained fi-om the previous iteration. For exm-nple, the flux though 
the east control surface Fo is given as 

Fo =F: +~'(U-FY', (i2) 

where ? is the blending factor, and the superscripts H and L repre- 
sent higher- and lower-ordea- approxknation of the convection tern:, 
respectively. NozTnally, the explicit part is so small that it may not 
affect the conveegence significantly. In this study, as the lower- and 
the higher-order scheme, the upwind difference scheme (UDS) and 
the central difference scheme (CDS) are chosen, respectively. The 
case with ?=0.5 is called the mixed difference scheme (MDS). 

NUMERICAL RESULTS AND DISCUSSION 

The Ix-oposed algo:ithm is applied to sinmlate the convection- 
dominated meltmg of a pure gallium. The numerical predictions 
are coml:~-ed with the experimental data and nva-nez-icaI results de- 
termined by the transformed-grid methcd in the previous works. 
The galIiva-n melting expez:uents of Viskanta and his coworke:~ 
[Gag and Viskanta, 1986; Beckem:ann and Viskanta, 1989] are se- 
lected as references because they have been widely cited for the 
veritication of recently developed numerical mcdels [Brent et al., 
1988; Desai and Vafai, 1993; Viswanath and Jaluha, 1993; Rady 
and Mol-arty, 1996]. The experimental configurations are sketched 
in Fig. 1. The them:ophysical properties used in the calculation are 
adopted from Brent et al. [1988]. 
1. Example 1 

Experiment 1 of Beckem:ann and Viskanta [1989] is simulated 
with the proposed method Rady and Mohanty [1996] used a non- 
umform 35x35 grid for the fixed-grid calculation after a grid refine- 
ment test Hence, this study simply adopts a non<aiform 40x40 
grid for Example 1. As the interpolation scheme for the com:ective 
trmsport tern:, the mixed difference scheme is adopted because it 
gives satisfactory results for the prediction of the flow structure in 
the melt and the evolution of the fi-ont location. The effect of the 
interpolation modeI for the convection tezTn on the numerical results 
will be discussed later. 

The Ix-edicted tempea-a~-e Ix-oNes at 3, 10, and 50 rain are shown 
in Fig. 2, where the experimental data and the transformed-grid re- 
sults obtained by Beckermann and Viskanta [1989] are also given 
for the comparison. The calculated temperature distributions show 
a better agreement with the experimental data than those by the trans- 
formed-grid. 

In this melting experiment, Beckem:a:m and Viskanta reported 
that it took about 20sec for the hot wall to reach the desired tem- 
perature, and the time delay in heati:g is small enough. Because 
the calculation also shows its effect to be negligible, the cornputa- 
tional results with the delayed heat-up are not presented in Fig. 2. 
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Fig. 2. Temperature  profile for Example  1, where 0~ and 0, repre- 
sent dimensionless  temperatures  of  liquid and solid phase, 
respectively: (a) a t 3  min;  (b) at  10 min;  (c) at 50 min .  

2. E x a m p l e  2 

In order to veiq_fy the predictability of the evolution of the phase 

fi-ont> Gau and Viskanta's [1986] melting expeas-nent conducted in 
a rectangular cavity with HAzq=0.714 is chosen. A uniformly spaced 
50x36 grid is used for our calculations, while Viswanath and Jaluria 
[ 1993] used a uniform 50x30 gz-id for the fixed-grid calculation after 
a grid refinement test. 

As for the inteq;olation schemes of the convection ten-n, we tested 
four schemes preliminarily; UDS (7=0.0), CDS (7=1.0) and MDS 
(y=0.5) and a power law scheme (PLS). During preliminary calcu- 
Iatjons, the delayed heat,up at the heated wall ks not considered The 
fi-ont locations predicted by the UDS, the MDS and the PLS are 
similar to each other, but the phase change front by the CDS is some- 
what distorted An interesting point to note is that the flow s~uc- 
tures obtained in many researches [Brent et aI., 1988; Viswanath 
and Jalua-ia, 1993; Vollez; 1997] show oi~Iy a single ceil in the melt 
region. Viswanath and Jalurla [1993] observed a secondary recir- 
culation ceil in the lower part of the melt region with the Irans- 
fozTned gIid. Howevei; they also were not able to capture the sec- 
ondary eddies with the fixed-grid based on the enthalpy method, 
even with a freer resolution (60x50) than the Iransformed-gnd cal- 
culation (40x40). Our calculations show that the CDS and the MDS 
predict the slreamlines that are obviously distorted due to the second- 
ary flow structure, as shown in Fig. 3 wtfile the UDS and the PLS 
generate only a single cell. The results support that the upwinding aI- 
gorithm tends to be overly diffusive and suppresses the secondary 
s~uc~are as Ferziger and Pez-ic [1999] criticized. The tested results 
show that the IvIDS has good predictability of the fi-ont location and 
the flow s~ucture in the melt The MDS, hence, is adopted as an in- 
tellmlation scheme of the convechon term throughout the calculahon. 

As shown in Fig. 4, the measured phase fronts are plotted to ver- 
ify the proposed model with the transfozTned-giid solutions tmsed 
on the finite element method [Desai and Vafai, 1993] and the finite 
volume methcd [Viswanath and Jahria, 1993]. Of course, in both 
studies, the heated wall condition was treated as ideal sudden tem- 
perature elevahon and the ~ne delay in heating up the heated wall 
was not considered 

When comparing solid-liquid interfaces of two methocls at 6 and 
10min, the ~nsformed-gnd method gives good agreement with 
the expez~-nental data. But the predicted solid-liquid interfaces by 
the proposed method without taldng the delayed heat-up into ac- 
count show some discrepancy with the expez~'nentaI data. Such dis- 
crepancy is, in fact> more reasonable because the impulsive tem- 
perature rise is very dif}icult in the experiment and the heated wail 
should be heated up with time delay. The ac~aI m-nc~lt of energy 
trausfen-ed to the gallium tt~ough the hot wail should be less than 
the energy imposed in the idealized simulation, so that the retarda- 
tion of the fi-ont evolution in the expem'nei~ is probable. The meas- 
urement of the reliance of the ac~al temperatLtre at the heated wall 
is required to account for the delayed heat-up. Howevei; a detailed 
tmtory of the tempera~es at the hot wail is not available in this 
problem. Therefore, we introduce the time constant as shown in 
Eq. (1) because we may approximate the temperature at the hot wall 
to be exponentialIy growing with a suitable time constant. We as- 
sume "c=67.89 sec, which corresponds to Tu (4 min)=37.71 ~ and 
Ts+ (8 rain) = 37.59 ~ This tempera~are tmtory is close to the meas- 
ured data in a similar experimental condition (See Fig. 5 in Gan 
and Viskalta [1986]). As can be seen in Fig. 4, the inclusion of the 
delayed heat-up iml~oves the numeiical prediction considerably. 
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The predicted phase fi-oi~ with the consideration of time delay are 
retarded due to less heat Izansfer fi-om the heated wall, and they are 
in excellent agreement with the experhnental results. 

The effect of delayed heat-up at the hot wall is less signiicant at 
19 min; on the contrary, the interfaces obtained by Viswanath and 
J aluaia [1993] with the Iransfon'ned-giid deviate much more fi-om 
the experimentN data than those with the pmpmed model. The finite 
element results by Desai and Vafai [ 1993] do not present the fi-ont 
location at 19 rain, so that these are not coml:~-ed in Fig. 4. It should 
be noted that all nurnericaI results at 19 min presented in Fig. 4 show 
much discrepancy with the expei%nentaI data than those at 6 or 10 
min. Even though the proposed model gives better prediction than 
the previous models, our results still have an obvious discrepancy 

with the experiment Some l:art of the discrepancy can be explained 
by considering the experimental condition at the cooled wall. Ac- 
cording to Fig. 5 in Gnu and Viskanta [1986], the cold wall te~'nper- 
alz~re was gradually increased fi-om the initial temperature to the fu- 
sion temperat~re. Hence, as time proceeded, less heat was removed 
th-ough the cold wail. The inaccurate modeling of the thennophys- 
ical prope~es such as the arnsolropic nat~tre of the thermal con- 
ductivity as well as the nurnerical modelmg error, of course, can be 
another reason for the discrepancy. 

C O N C L U S I O N S  

The melting driven by conduclJon as well as convection in a rec- 
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tangular enclosure is investigated numerically. The mathematical 
model based on the enthalpy-porosity method is developed to de- 
scribe the phase change accompanied with natural convecfiorL This 
study adopts tile fi-ont,layer ixedictor-con-ector and tile pseudo New- 
ton-Raphson algorithms, whose effectiveness is verified through 
solving the conduction-&-iven phase-change ixoblems. Results of 
the proposed model show excellent agreement with expenmental 
data and transformed-grid results available in the literature. 

Tile effect of the time delay in heating a hot wall on the melting 
is stx~diecL The computational results indicate that the delayed heat- 
up will affect the phase-change process if the time constant of the 
heat,up at tile heated wall is not small enough. They also imply tile 
delayed heat-up causes the discrepancy between the m~encaI  and 
the experimental results. 

NOMENCLATURE 

C 

CDS 
f 
F~ 
tl, 
L 
1rIDS 

S 
T~ 
T,, 
Tc 
TH 

TH0 
UDS 

specific heat capacity 
central difference scheme 
liquid mass fraction 
flux through the east face 
satta-ation entilalpy of solid 
latent heat 
mixed difference scheme 
power law scheme 
source vector to account for velocity suppression 
initial temperature 

: fusion temperature 
: temperature at the right wall (cold wail) 
: temperature at tile left wall (hot wall) 
: predetemmled temperature to be reached 
: upwind difference scheme 

Greek Letters 
Ct 

P 
7 
AT 

P 

Pr 

: tilemlal diffusivity 
: tilemlal expar~sion coefficient of liquid 
: blending factor used in deferred correction method 
: temperature difference (TH0- T,~) 
:density 
: time constant 
: PrandtI number (=v#ct) 

e a  

Ste 
- Rayleigh ntanber (= gl3ATH3/0~vz) 
: Stefan number (=cAT/L) 

Superscript 
H, L : higher- and lower-order approximation of the convec- 

tion term 
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